

2013 Southern Apex Summit

BPE-HAY A&B Reconductoring – Data Gathering, Analysis and Management Craig Thornton

Ш веса

Presentation Overview

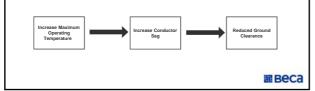
- Reconductoring of BPE-HAY A&B Lines
- Data Processing of Reconductoring Analysis
 - Conductor Selection
 - Potential Low Clearance Issue Evaluation
 - Automated Rectification Generation Spreadsheet
 - Loading Analysis Data Process
 - Summarising for Design Solution Selection

веса

BPE-HAY Line Background

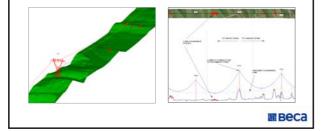
Bunnythorpe to Haywards (BPE-HAY) A&B Transmission Lines

- Two Single Circuit 220kV Transmission Lines
- Both Lines Run Side By Side Entire Length
- A Line 330 Structures B Line 310 Structures
- First Commissioned in 1950 Large Terrain Variability
 Existing Conductor Goat ACSR/GZ



Beca

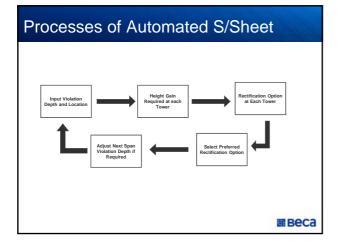
Conductor Selection

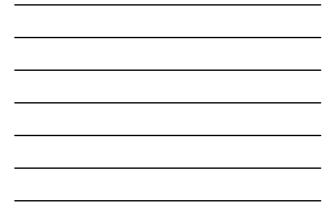

- Conductor Options Considered
- Goat ACSR/AC 80°C
- Zebra ACSR/AC 65°C / 75°C / 80°C / 85°C / 90°C
- Sulfur AAAC/1120 55°C / 60°C / 65°C / 90°C

Increasing the maximum operating temperature of a conductor increases its capacity. However higher temperature also means more thermal expansion of the conductor which leads to a greater conductor sag and lower ground clearance.

Low Clearance Issue Evaluation

- All lines modelled through 3D modelling software PLS-CADD
- Uses Arial Laser Survey (ALS) to produce ground profiles and obstacle modelling
- Used to check for potential low clearance issues for each reconductoring option
 Large proportion of spans identified as having potential low clearance issues.
- Large proportion of spans identified as having potential low clearance issues.




Development of Automated S/S

- Zebra 75°C Medium Sag Option ~ 300 of 640 Spans have low clearance issues.
- 10 Reconductoring options = ~ 3000 low clearance issues to rectify?!
- Spreadsheet developed to automate rectification process
- Not as accurate as manual process but allows for a quicker and direct comparison of the magnitude of work required between the reconductoring options.
- Able to be used to select the reconductoring option to be assessed in more detail.

 BPE-HAY Automated Rectification Schedule A Line Zebra ACSR/AC B5'C

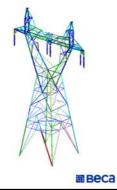
ine	ture .		ruture ratio	Atest	Indura Indura	Weenum-Industrial	* 140	Balk (part	Petertory/duble- Death Miler Adjust	Canduction Vice	anamoni Mya	tan Trates		han ar	indu-te
Ingen 1	74	TIN	10	TIN	10	Annual televised	Span.	worthed	Argen Mad (m)	fact.	Arest	Mor	Burth.	Aresel	101/249
1	12	174	- 40	5.6	-		0		0.00	4.4	6.0	-		-	-
	73	5.8	140	51,6	140	1.29	60		1.25	3.3	1.5		- 16	5	73
78 -	14	9,8	14	578	40	0	ō.	141	0.00	-0.0	0.0				
14	- 15	578	40	5.5	-	9.40	- 90		-643	4.5	-0.5			1	- 75 -
5	78	3.8	14	31.8	1		- 76	799	-0.89	2.0	1.6		2	2	
14	- 72	5,6	- 10	5,6	- 10		0		0.00	- 44	- 65				
12.1	78	9.6	761	9.6	181				6.00						
78	79	3.6	. 16	3.4		140	-		1.43	2.8	2.9		3	3	
19	790	3.6	141	51,6	100	6.99	-60	185	6.00	4.4	- 0.0				
150	111	9.5	140	9.5		1.25	-55		1.29	2.6			. 5	2	
PLG - 1	- m2	9,6	100	54,6		1.0	- 40	F#5	100		- 0.0		_		
	11.9	5.6	40	51,6	40	1.30	42		3.45	4.9	9.0				120
12.8	734	3.8	- 10	3.4	10	1.00	- 60	181	0.00		0.0				
754	1115	5,6	50	576	- 60	8.12	-46		5.57				- 5-	- 5	114
na 1	F18	178	50	9,6	140	1.02	-90		1.02	24	2.1		3	5	720
714	71.7	5.6	- 100	5.8	100		-	785	0.00	44	- 00				
12.2		9.6	161	54,6	140	1.20	40		1.19	2.4	2.4		5	3	738
124.1	718	9.7	. 181	3.8	. 100	1.73	-11		0.20	-0.5	0.5			2	718
	130	9.6	145	5.4	145	1.66	42		1.66	35	82		4	- 4	130

Output Processing / Verification

- Spreadsheet tested and optimised through comparison of automated and manual analysis.
- Spreadsheet developed through iterative upgrade process.
- Tested for various scenario's to remove flaws.
- Optimised to get as close to manual analysis as possible.
- Outputs summarised into volume of work required.

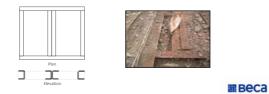
anter .		Colora ACOM MC.	Min (W		Cales ACON PEC	Mue De	Zales ACIDE BLC Mon Ca					
	Poduto -	Property .	Adventure .	Parist .	Property .	Adventure -	Partan -	Property .	Adventure of			
						1.1		-				
				1.07								
**	**	-			1410	-	**	their-ren				
**	-			+14		20	3.1	NC	A			
	4,0	-	3.4		-	C	1-1	34	Jan.w.			
.91	-	-	1.1	**	-	-		1	Inte			
	810	-		4.84	their-imi	101-101	14	Ince	10+10			

веса


Loading Analysis

- PLS TOWER models developed and used to produce tower and foundation loadings.
- Outputs used to assess structural and foundation strengthening requirements
- Loading assessment is conductor specific. Maximum operating temperature does not affect loads.
- Rectifications applied affect tower loading

Structure Loading - Analysis


- Towers built in 1950. Towers designed to different standards than used today. Assessed to todays standards.
- Reconductoring options using larger than existing conductor – higher loads.
- Developed techniques to process TOWER outputs to approximate strengthening requirements.
- Strengthening summarised in terms of kg of new steel required.

Geotechnical Analysis

- Both line almost completely grillage foundations.
- Geotechnical assessment carried out and foundation capacity
- determined.

 Developed spreadsheet to assess foundation load against capacity.
- Developed spreadsheet to assess foundation load against capacity using inputs directly from PLS-CADD.
 Identifies quantity of foundations requiring strengthening. Does not
- assess strengthening requirements.

Summarising for Final Solution

- Outputs all collated and summarised at high levels to allow for quick comparisons of quantum of works required.
- 'Scope Document' produced to summarise all information in the one location
- Enabled for direct comparisons and evaluation of the different options to best allow the selection of the preferred reconductoring option.

to using a	Patrontal	Pris		Foundation	troughoung .	Tower Inc.	-			
-	Volation Repti tr	Restleans later	Respirations.	Property lines	-	Manghampy	Comments Hotores per Youne Ini -	Indian .	Manh of Stand	Damag Angle
	1.0	1000 Dector	1			Singlet	11 51 51		247	
-	-18	NV.				Seator				
υ.	-18	10.0	18-	1					28	
.91	18	-68 - 60						-	24	
18	-13	15-24-168-80	- Ú				1. A	200	28	
	-18	Clean	- 11			3727		1.0	197	

