

Case Study – Objectives

- Reiterate the importance of *Quality Assurance* for UG cable installation
- Highlight the impact of substandard installation on asset life cycle performance
- Importance of condition monitoring technologies to manage the legacy QA issues

Cable Component Failures and Failure Modes

 $Reference: A\ History\ of\ Medium\ \&\ High\ Voltage\ Cables - Nigel\ Hampton\ (Georgia\ Tech\ \&\ NEETRAC)-2012\ presentation\ CIGRE\ TB\ 279: Maintenance\ of\ HV\ Cables\ and\ Accessories\ - Failure\ mode\ analysis$

TWH-PUK 33kV Cables- Installation Issues

Circuit Details

A. TWHCB2782 - PUKCB742 Cable length – 11,317m Cable insulation- XLPE Cable age - 17 years Nos. of joints – 32

B. TWHCB2842 - PUKCB672 Cable length –11,323m Cable insulation -XLPE Cable age -17 years Nos. of joints – 35

Investigations and Failure Modes

- Under crimped joints
- Severely contaminated joints

Risk Mitigation

- Introduction of new offline PD test regime to achieve better quality assurance of newly installed & repaired 33kV cables
- Proactive risk management of critical TWH PUK cables, with the help of continuous online PD monitoring
- · Periodic training and refreshers for cable crew

Continuous Online Monitoring System

- Smart cable guard (SCG) system is synchronized double ended online PD monitoring system.
- With the help of SCG system, we can monitor the cable condition on the real time basis.

Installation of SCG System

Warning Levels: SCG System

- Level 1: High failure probability, the advice is to replace immediately in critical circuits.
- Level 2: Striking partial discharge activity, somewhat increased failure probability, the advice is to monitor the development over time.
- Level 3 : Some partial discharge activity, minimal increase of failure probability, normally no reason for concern (yet).

Smart Cable Guard has detected partial discharge activity indicating an increased failure probability:

• Circuit: Hamilton - TWH (2782) (Phase C) -- PUK (742) (Phase C) • Location: 7179 m (± 113 m) from Hamilton - TWH (2782) (Phase C)

• Component: Joint
• SCG warning level: 1

 $\label{lem:reduction:Bosed on experience, averagely after assigning a level 1 warning there is a 50\% failure probability within 3 years for PILC cables. For XLPE cables there is a 50\% failure probability within 10 days.$

Key Improvements

- Continuous online monitoring is helping WEL Networks to monitor operationally critical cables condition on the real time basis.
- Operational reliability is better managed for critical network cables with the known degradation.
- Effective prioritisation and job planning to repair known defects.

Reference:

- > CIGRE TB 825: Maintenance of HV Cable Systems
- ➤ CIGRE TB 279 : Maintenance of HV Cables and Accessories Failure mode analysis
- ➤ A History of Medium & High Voltage Cables Nigel Hampton (Georgia Tech & NEETRAC)-2012 presentation
- > TE Connectivity: Failure investigation reports (TWH-PUK cables)

Questions

