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Background
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% Increasing adoption of Distributed Energy Resources
(DERS) e.g., solar PV, Electric Vehicles (EV)

> Decreasing prices
> Sustainability goals
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Rate of adoption for solar PV and electric vehicle in New Zealand as of October 2020.

Source: https://www.emi.ea.govt.nz/ https://www.transport.govt.nz/

% Issues:
> Intermittent
> Increase demand peaks (due to EV)
m overloading, undervoltage
> Reduce demand troughs (due to PV)
m reverse power flow, overvoltage
> Reduces load factor (low efficiency)

Traditional Solution:
% Increase System Capacity
> Risky Investments
> Higher costs of power delivery
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Solutions

“Non-wire” solution:

%  Demand-side management
> wide scope
> “blind” to local issues

Design Criteria:

<> Control aggregate demand

> Permanent peak reduction

> Respond to utility requests
Localized but scalable

> Manage local issues

> Respond to operator command
Autonomous

> Respond to local grid limits
Consider user comfort

> Fair response burden
Consider user privacy

> No central server

> User data stay within their premises
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Increasing Speed of Response and Granularity of Control
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Ramping up the LDC signal will enable more loads to come online. If there is
not enough load to consume extra power from the local generators, generation
curtailment will happen at higher values of LDC signal. Meanwhile, as the
signal ramps down to reduce power demand, batteries will start to discharge
power to help out in supplying energy locally.

LDC is a type of demand response that can enable local grids to control the aggregated demand at a specific level...
i.e., ramp up, ramp down, or stay relatively flat, subject to the constraints of available flexible loads. 5
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System Modelling and Simulation

Dongle

Injector

Physics, Statistics

Local Grid

System Model

Environment

S* = states
A* = actions

Weather API —| Update time and conditions

l /\ Benchmarks
Load Demand Load Local Grid
Models Schedules Distribution Setup
%?Q,ﬁg: Usage Profiles Energy Baseline

Study, Demand
Trends

Dataset sources: GREEN Grid Project (NZ), Tracebase (Germany),
Pecan Street Database (USA), GREEND (Austria), REFIT (UK)

Create Grid and Loads
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Simulate impact on local grid
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Simulation




Ardmore Microgrid Setup

Extgrnal Grid LDC Signal Injector

Injection coupling (toroidal core, split-core)
Transformer Inverter with Iow-pass/band-pass filter (LCL), 750-850Hz
30KVA, 0.4/0.4 kV. 50Hz Power Supply derived from 230Vac
Delta-Wye Microcontroller, Integral Loop Control

Grid Server
LDC Dell Optiplex 7050, 500GB SSD, 16GB RAM,
é Signal Grid Server Intel I7-7700 3.6GHz CPU
Injector Graphics User Interface
Data Logger

Emulation Control
Simulation: Base Case
Simulation: LDC Case

343 Reg Power Supply
5 Regatron Generator Emulator
% Generator 30 kVA, 3-Phase, 400V, 50Hz
Emulator
Supply Cable

NAVY-J 4x185MM2 SE 0.6/1kV, ~250 meters
Buried 1m, 250A fuse at trafo, 160A fuse at each house

S PP THoiiees 234 € """"7 East House

: East House: Houses 2,34,5 | Subdivided into 4 Houses
H2 | H3 Real Loads: Heat Pumps, Water Heaters

Emulated Loads: Baseloads (e.g., Lighting, Cooking),
House 2 House 3
: Ha| Ho Electric Vehicle, Battery Storage, Freezers,

Wates Heaters Fridges, Clothes washer, Clothes dryer,

d 1 Dishwasher

2|«

Resistor Bank Capacity: 15 kVA
Electronic Load: Chroma 63800
Connections:

House 4 House 5 House 2: Y-N,  House 3: B-N
House 4: Y-N, House 5: B-N

1 1 1 Solar Panels
Connection: House 5, B-N

Capacity: 20 x 270 Wp 30.8VDC,
Storage: 8 x 120Ah, 12 VDC
Orientation: ~60 deg facing North (winter optimum)

West House: House 1 West House

Real Loads: Heat Pumps, Water Heaters

Emulated Loads: Baseloads (e.g., Lighting, Cooking),
Electric Vehicle, Battery Storage, Freezers,
Fridges, Clothes washer, Clothes dryer,
Dishwasher

Resistor Bank Capacity: 15 kVA

Electronic Load: Chroma 63800

Connections: House 1: R-N

Kitchen Bath Room 2
LXK,

Solar Panels
Connection: House 1, R-N

Capacity: 20 x 270 Wp 30.8VDC, Water heaters Heat pump
Storage: 8 x 120Ah, 12VDC

Orientation: ~30 deg facing North (year-round optimum)
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Ardmore Microgrid Setup
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4800W

Serial Demand Aggregation Controller:
Interface Raspberry Pi 3 with Piface Digital 10

Solar PV/Battery Controller

Control Dongles
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Total Power: 0.354 kW
Power Factor: 0.874
Voltage: 234.08 V
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Temp Target: 57
Flexibility: 0.266
Priority: 0
Actual Demand: -0.509
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Heat Pump
Temp Out: 16.419
Humidity Out: 0.75
Windspeed: 7.802
Temp In: 24.5
Temp Target: 20
Humidity In: 98
Flexibility: -0.062
Priority: 0

[

08:00
Nov 11, 2020

3000

2500

2000

Power (W)
i
wv
o
=}

1000

500

Localized Demand Control

Home Status

Total House Demand

Devices Demand

a Q4

14:00 16:00

ODEX+#a T« H

e power_kw

18:00

w baseload
m== clothesdryer
m=== clotheswasher
w= dishwasher
= freezer

e fridge

mm== heatpump
s waterheater

11



Case Study: Load Factor Enhancement
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? Network:
~ Dickert Benchmark Residential LV Network*
Trafo: 300 kVA, 20/0.4 kV, Delta-Wye

60 Houses

40m average distance between ICPs

o @
s 4 .
o 0 o
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N Weather:
j ‘* j 4 e  Winter 7-days
<+ <+ e  Summer 7-days
<+ <+ <+
ﬁ o j J 4l Location:
o e Ardmore, Auckland, New Zealand
Cases:
* e DER adoptions: with LDC vs no LDC

e LDC adoption at 40% DER adoption

*Consistent with New Zealand networks as studied by Watson et al.
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Power Demand: No LDC

Results ™
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50% to 80% LDC adoption.
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Summary of LDC Merits and Potentials

LDC Functionalities Local Applications Future Applications

% Shift local demand % Reduce peaks %  Dispatchable demand

%  Curtail local generation % Increase load factor %  Better load forecasting

%  Manage battery-based loads % Avoid reverse power % Ancillary service

%  Follow target net power demand % Integrate PV and EV > change setpoint based on f, V

9,
%

Assist blackstart
Offer demand response service
Vehicle to Grid
Implications
> Opportunity: revenue stream
> Savings-—->Reduce power cost

% Implications:
> Defer costly upgrades
> Better asset utilization

0 2 R
L X X X4
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Conclusion

Increase in adoption of DERSs is inevitable
DERs causes issues at the local grids

|\\

Traditional “wire” solutions are risky
Existing Demand Response program may overlook the issues of the local grids

Localized Demand Control can help prepare local grids for more DER adoption

16



Research progress and recommended future topics...

e Priority loads for enrollment to LDC system (done)

e Advanced algorithms (on going...)

e Scaling up for the wider grid (optimal demand settings)
e Application for vehicle to grid

e Pilot test on a local grid with more ICPs

e Cost-benefit analysis of LDC vs alternative solutions

e Market structure for shared value for all stakeholders

e Policy requirements

Our team is actively talking with potential partners in the industry

to develop and bring the LDC technology to reality.
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