EEA.CO.NZ ### Working group members Simon Leitch- Transpower Paul Blackmore (Chair) - PowerCo Shaun Brown - NorthPower ### **Conductor Working Group** Ken Pattie - PowerCo David Paterson – Aurora Energy Merv McKay – Orion #### Background The EEA Asset Management Group (AMG): - Had concerns that Conductor Condition is poorly understood - Conducted a survey in 2015 on conductor types, failure modes, replacement plans, and conductor inspection / testing techniques employed - Would like to provide general guidance to industry - Working group established in 2017 # Annual Replacement of Conductor (km/year) ## Working group – outputs - Conductor condition techniques assessment - ACSR Conductor Assessment Laboratory Scope - Test standards - Conductor sample requirements ## Conductor condition techniques assessment | Category | Technique | Technical description | Typical productivity (spans per day | Applicable access methods | Typical minimum skill requirements for key personnel | Speed | Ease of Use | Maturity | Accuracy | Field Results | Consistency | Cost | NZ use
(commercial) | |-------------|--|--|---|---|---|-------|-------------|----------|----------|---------------|-------------|---------|------------------------| | Visual | Ground-based | Visual inspection of conductor from the ground. Typically completed as part of defect patrols. | 1-100 | Walking Driving | Experienced line mechanic/inspector. | 1 | 3 | 3 | 0 | 3 | o | 2 | 3 | | Visual | Structure climbing | Visual inspection of conductor from conductor height near each structure. Typically | 1-5 | Structure climbing - inspection only Elevated work platform - inspection only | Experienced line mechanic/inspector. | 1 | 2 | 3 | 0 | 3 | 1 | 1 | 2 | | Visual | Remote camera | Wireless camera (e.g. go-pro) mounted on a hotstik. Typically used to inspect pole top condition on distribution assets rather than conductor condition. | 1-20 | Telepole from ground | Experienced line mechanic/inspector. | 1 | 2 | 2 | o | 3 | 1 | 2 | 2 | | Visual | Melicopter - close
serial inspection | Visual inspection of conductor from a helicopter flying along side a line at 10-15 km/h
with numerous inspectors looking for and recording conductor condition issues and
defects. In some cases, these inspections can be supplemented by electronic video
records. | 100-200 | Helicopter - inspection only | Multiple experienced line mechanics/inspectors. | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 3 | | Visual | Fixed wing - aerial
inspection | Visual inspection of conductor from a fixed wing aircrat flying along side a line at XX km/h. High definition video is collected and post processed. [SCOTTTO PROVIDE INFORMATION] | [SCOTT TO
PROVIDE
INFORMATION] | Fixed wing aircraft | | 2 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | | Visual | Smart Aerial
Inspection Platform | A rack of independently controlled high definition digital cameras which track
conductor while taking images. Automated image processing routines provide a long-
list of images to be reviewed by trained staff. Provides information on corrosion
bulging. | 50-200 | Helicopter - inspection only | Numerous specially trained Engineers and technicians. | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | | Visual | Insulator lifting
Inspections | Nands-on visual inspection of conductor, including manipulation of outer strands,
primarily for the identification of vibration damage and corrosion. Requires
disconnection of conductor from insulator hardware to enable removal of helical
support rods. | 2
(clamps) | Structure climbing Elevated work platform | Line mechanic (de-energised). | 0 | 2 | 2 | 1 | 3 | 2 | 0 | 2 | | NDT | Cormon (aka
OHLCD) | A remote controlled cart/sensor which uses eddy currents to quantify the remaining
protective coating thicknesses on steel cores of ACSR/GZ and AC conductors. | 1-20
(individual sub-
conductor spans) | Structure climbing - live-line or de-energised Elevated work platform - live-line or de-energised Helicopter - live-line (at or above 110 kV) or de-energised | Specially trained Engineer - only available resource for NZ is through ATTAR and is based in Australia. | 1 | 1 | 2 | 2 | 0 | 3 | 1 | 3 | | NDT | LineCore (drone) | A drone deployed device which uses eddy currents to quantify the remaining
protective coating thicknesses on steel cores of ACSI/CZ and AC conductor.
https://www.youtube.com/watch?v=z8rh_AIV3208feature=youtu_be&list=PLURJUCZG
CSIZE_PSI/CZYSCH+V=ZESSFP
Given the precommercial nature of this device, we have assumed the same technical
characteristics and Compon. | Unknown | Unmanned Aerial Vehicle | Unknown | 1 | 1 | 0 | 2 | 3 | | 1 | o | | NDT | Corona (e.g.
CoroCAM, DayCor) | Handheld camera which can identify conductor surface irregularities through high
electric fields. This technique can reliably identify:
*Booken strands
- Conductor clamp defects
insulator defects
- Severe surface scratches. | 1-200 | Walking Driving Helicopter - inspection only | Experienced Corona camera operator with lines Engineering
or lines mechanic/inspector background | 2 | 1 | 2 | 3 | 3 | 2 | 2 | 3 | | NDT | LineVue | A remote controlled cart/sensor unit that uses hall effect sensors to measure the remaining steel cross section of steel conductors (e.g. $\Sigma C/GZ$, $\Sigma C/AC$, $ACSR$). The device also claims to provide an indication of the severity and extent of surface pitting corrosion. | 1-7 | Structure climbing - live-line or de-energised Elevated work platform - live-line or de-energised Helicopter - live-line (at or above 110 kV) or de-
energised Too heavy for hotstick deployment | Specially trained operator - only available resource for NZ is
through SaferPower and is based in Australia. | 1 | 1 | 2 | 1 | 0 | Unknown | 1 | o | | NDT | Acoustic (Foresight
/ Northpower) | Nandheld ultrasonic audio device which detects partial discharges. This technique can
reliably identify broken strands, hardware/clamp defects, and insulator defects.
Investigations are underway to confirm its reliability with conductor corrosion and
grease holiday defects. | 1-500 | Walking Driving | Highly trained operator (requires 6-months training in
Korea), one available in NZ. Note, there are other suppliers
of similar technologies which may provide very different
results. | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | | NDT | CDIS (Quest
Integrity) | A remote controlled cart/sensor unit that assesses aluminium cross section area on conductors with aluminium strands (e.g. ACSR, AAAC, etc). | N/A | Structure climbing - live-line or de-energised Elevated work platform - live-line or de-energised Helicopter - live-line (at or above 110 kV) or de- energised | Specially trained operator. | 1 | 1 | 0 | Unknown | 0 | Unknown | 0 | 0 | | NDT | EMAT
(Electromagnetic-
acoustic
transducer) | The EMAT imparts an acoustical signal to the conductor and records reflections. The
result can be correlated with the number of broken conductor strands, particularly
under clamps. The technology is capable of detecting damaged strands at distances up
to 6m from the measurement location. | N/A | Structure climbing Elevated work platform | Une mechanic and specialist EMAT operator (none in NZ). | 1 | 1 | 0 | Unknown | o | Unknown | Unknown | 0 | | NDT | Portable digital x-
ray | Digital x-ray imaging of conductors, accessories or handware to identify defects
(broken strands, corrosion, offcentre 2-stage ACSR joints). Particularly under clamps,
joints, and helical fittings. | 1-4
(circuit structures
on single bundle
conductors) | Structure climbing - live-line or de-energised Elevated work platform - live-line or de-energised | Certified x-ray technician, relatively easy to find. | 1 | 0 | 1 | 2 | 3 | Unknown | 2 | 1 | | NDT | Thermography | Handheld digital infrared spectrum camera which aims to detect hot conductor or
joints indicating presence of defects. Results are more reliable under ideal awasther
conditions and with high circuit ideads. In some cases the latter can be created by
operators temporarily reconfiguring networks. | 1-200 | Walking Driving Structure climbing - inspection only Helicopter - inspection only Unmanned Aerial Vehicle | Experienced and certified Thermography professional with
lines Engineering or lines mechanic/inspector background. | 2 | 1 | 3 | 2 | 3 | 1 | 2 | 3 | | NDT | Ohmstik resistance
testing (live line) | Handheld micro-ohm meter which measures a voltage drop across the probe and
current through the conductor to calculate a resistance. The Ohmstik can be used on
bare conductor, joints and bolted connections under live line conditions. | 1-50 | Structure climbing - live-line or de-energised Elevated work platform - live-line or de-energised Helicopter - live-line (at or above 110 kV) or de-energised | Experienced Engineer/technician and line mechanics to
operate and interpret the results in real-time.
Experienced Engineer required to interpret the test results. | 1 | 1 | 3 | 2 | 3 | 2 | 0 | 3 | | Destructive | Conductor
sampling
then Laboratory or
Engineering
assessment | Removed of a short fength of conductor of interest, typically Sn to 20m. Detailed
enabylist of a conductor snapsh both has been removed from a line. Possible to
excurately quantify the level of degradation in the conductor as well as to predict the
creaming life. Limited by the application for small snapsh ears. Due to the
significant costs, it is very diffical to get a meaningful ample size to enable an
originar to accurately assess the general condition of the conductor. | 1-2
(individual
samples) | De-energised work methods typically used, some
live-line sampling is done overseas | Specialist laboratory required for the dismantle and
assessment of the conductor sample - a few such labs exist
within NZ.
Laperience Engineer/Asset Manager required to assess the
results and determine what actions are necessary. | 0 | 2 | 3 | 3 | O | | 1 | 2 | ## ACSR Conductor Assessment Laboratory Scope | | Item | Description | Test | | | | |----------------------|------|--|-------------------------|--|--|--| | | | Visual assessment of conductor sample, include photos and notes of: | | | | | | | | - Defects, e.g. broken strands, arcing damage, fretting, fatigue failures,
- Visible corrosion products | | | | | | | 1 | | | | | | | | 1 | - Significant abrasion, wear, or fretting damage | N/A | | | | | | | - General condition | | | | | | | | - Pay extra attention to the under-clamp or armour rod region of samples from clamp sites | | | | | | | 2 | Verification of the critical dimensions and stranding: | | | | | | | | - Nominal Aluminium strand diameter (mm to 2 d.p.) | | | | | | | | - Nominal Steel strand diameter (mm to 2 d.p.) | | | | | | | | - Total number of Aluminium strands (e.g. for Zebra ACSR, 54) | N/A | | | | | Mandatory | | - Total number of Steel strands (e.g. for Zebra ACSR, 7) | | | | | | Scope Items | | - Aluminium layers (e.g. for Zebra ACSR, three layers 12/18/24) | | | | | | | | - Steel layers (e.g. for Zebra ACSR, two layers 1/6) | | | | | | | | Residual electrical capacity, determined by either of the following methods: | | | | | | | _ | - Strand resistivity (minimum of 25% sample of Aluminium strands), or | AS 3607 | | | | | | 3 | - Strand mass loss (all strands, after careful chemical cleaning), or | TBC | | | | | | | - microscopic visual assessment of remaining Aluminium section (all strands). | TBC | | | | | | | Residual structural capacity, tensile test of strands - minimum of 25% sample of each | | | | | | | 4 | Aluminium AND Steel strands | AS 3607 | | | | | | _ | Residual material ductility, wrap test of Aluminium strands - minimum of 25% sample of | | | | | | | 5 | Aluminium strands | AS 3607 | | | | | | 6 | Report, in accordance with the "report layout" | N/A | | | | | | 7 | Prediction of remaining life of conductor to Client provided replacement criteria | N/A | | | | | | 8 | Remaining material ductility, torsional ductility test of all Steel strands | AS2505.5:2
002 | | | | | | 9 | Corrosion products analysis (as required) | N/A | | | | | Optional Scope Items | 10 | Grease drop point analysis (as required) | ASTM D566-
02 (2009) | | | | | | | Microscopic assessment to characterise damage and evaluate metal loss including | NI/A | | | | | | 11 | quantification of: | N/A
N/A | | | | | | | - Remaining Aluminium area and loss | | | | | | | 11 | - Remaining Steel area and loss | AS/NZS | | | | | | | - Residual coating thickness | 4534 | | | | | | | - Loss of galvanising or aluminium cladding | AS/NZS | | | | | | | | 4534 | | | | ## **Test Standards** | Test Type | ACSR | SC/GZ or SC/AC | AAAC and AAC | Copper | | |-----------------------------------|--|---|---|---|--| | rest type | ACSR | (Often applicable to ACSR steel cores) | AAAC and AAC | Соррег | | | | - AS 3607 – 1989 Conductors – Bare overhead, aluminium and aluminium alloy – Steel reinforced | | overhead – Aluminium and aluminium alloy | - AS 1746- 1991 Conductors- Bare overhead- Hard-drawn copper | | | Record of Geometric
Properties | - AS 3822 – 2002 Test methods for bare overhead conductors | AS 1222.2- 1992 Steel conductors and Stays Bare overhead (Part 2: Aluminium clad
(SC/AC) | overhead, aluminium and aluminium alloy –
Steel reinforced | - AS 3822 – 2002 Test methods for bare overhead conductors | | | | | | AS 3822 – 2002 Test methods for bare
overhead conductors | | | | | BS 215-2:1970 Specification for aluminium conductors
and aluminium conductors, steel-reinforced for overhead | | | | | | | power transmission. Aluminium conductors, steel- | | - AS 1531 - 1991 Conductors - Bare | - AS 1746- 1991 Conductors- Bare | | | | reinforced | | | overhead- Hard-drawn copper | | | Resistivity test | | | - AS 3607 - 1989 Conductors - Bare | | | | | AS 3607 – 1989 Conductors – Bare overhead, | | overhead, aluminium and aluminium alloy - | | | | | aluminium and aluminium alloy – Steel reinforced | | Steel reinforced | | | | | | | | - AS 1746- 1991 Conductors- Bare | | | | AS 1391 – 2005 Metallic materials- Tensile testing at
ambient temperature | | AS 1391 – 2005 Metallic materials- Tensile
testing at ambient temperature | - AS 1746- 1991 Conductors- Bare
overhead- Hard-drawn copper | | | | - BS 215-2:1970 Specification for aluminium conductors | | testing at ambient temperature | overnead- Haid-drawn copper | | | | and aluminium conductors, steel-reinforced for overhead | | | | | | Ultimate tensile test | power transmission. Aluminium conductors, steel- | | AS 1531 – 1991 Conductors – Bare | AS 1391 – 2005 Metallic materials- Tensile | | | | reinforced | | overhead – Aluminium and aluminium alloy | testing at ambient temperature | | | | | | AS 3607 – 1989 Conductors – Bare | | | | | - AS 3607 – 1989 Conductors – Bare overhead, | | overhead, aluminium and aluminium alloy – | | | | | aluminium and aluminium alloy – Steel reinforced - BS 215-2:1970 Specification for aluminium conductors | | Steel reinforced | | | | | and aluminium conductors, steel-reinforced for overhead | | | | | | | power transmission. Aluminium conductors, steel- | | - AS 1531 - 1991 Conductors - Bare | - AS 1746- 1991 Conductors- Bare | | | Wrap test | reinforced | | overhead - Aluminium and aluminium alloy | overhead- Hard-drawn copper | | | | | | AS 3607 – 1989 Conductors – Bare | | | | | AS 3607 – 1989 Conductors – Bare overhead, | | overhead, aluminium and aluminium alloy – | | | | | aluminium and aluminium alloy – Steel reinforced | | Steel reinforced - AS 3607 – 1989 Conductors – Bare | | | | | - AS 2505.5 -2002 Metallic materials Method 5: Wire - | | - AS 3607 – 1989 Conductors – Bare
overhead, aluminium and aluminium alloy – | | | | Torsional Ductility test | Simple torsion test | | Steel reinforced | | | | (optional) | - ASTM A938-07 (Reapproved 2013) Standard Test | | | | | | | Method for Torsion Testing of Wire | | | | | | | | | AS 3607 – 1989 Conductors – Bare | | | | | - AS/NZS 4534- 2006 Zinc and zinc/aluminium-alloy | - AS/NZS 4534- 2006 Zinc and zinc/aluminium- | | | | | | coatings on steel wire | alloy coatings on steel wire | Steel reinforced | | | | Coating thickness (as | | - AS 1222.1- 1992 Steel conductors and Stays | | | | | required) | | Bare overhead (Part 1: Galvanised SC/GZ) | | | | | | | - AS 1222.2- 1992 Steel conductors and Stays | | | | | | | - Bare overhead (Part 2: Aluminium clad | | | | | | | (SC/AC) | | | | | Dropping point of | - ASTM D 566 - 02 2009 Standard Test Method for | | | | | | grease (as required) | Dropping point of Lubricating Grease | | | | | | | | | | | | #### **Conductor Guide content** ### Panel discussion - What areas should be included in the guide? - Asset data availability - Bare and covered conductors - Failure mechanisms/modes - Service life experiences - Condition assessment tools/techniques - Laboratory assessment methods - · Conductor testing in the field - What experience do you have that is worth including?